Machine learning in logistics: Make every minute count


zurück zur Übersicht

This article was published in the September issue of Global Cement Magazine in 2020.

Die Logistik in der Zement-, Transportbeton- und Zuschlagstoffindustrie steht vor einer grundlegenden Umgestaltung, da traditionelle Werkzeuge und Verfahren durch maschinelles Lernen (ML) verbessert oder sogar ersetzt werden. Wenn es um die automatisierte Entscheidungsfindung in der Transportplanung geht, können ML-Algorithmen Vorhersagen einen Schritt näher zur Realität führen.

Wir alle haben den großen Hype und die Aufregung rund um das maschinelle Lernen (ML) mitbekommen. Es herrscht jedoch große Verwirrung darüber, was der Begriff ML wirklich bedeutet und welche Leistung dahintersteckt. Bevor wir also einen Blick darauf werfen, wie es die Logistikleistung in unserer Branche verbessern kann, wollen wir zunächst fünf der gängigen Mythen rund um das Thema ML aufschlüsseln.

by Dr. Paul Flachskampf and Dirk Schlemper, INFORM GmbH, Germany

Myth 1: ML can do anything with data. For many, ML simply means shovelling piles of data into one side of a computer and collecting ‘answers’ on the other side. What if the answers are wrong? Well, just stir the pile until the answers start looking right. Right?

No, it isn’t that easy. ML is a sophisticated set of technologies that allows you to use the data generated by your business. Before you can expect answers, however, you have to understand the problem that you are trying to solve.

Myth 2: ML and data mining is ‘easy.’ Early experiences in ML oft en resulted in disappointing results because analysts grabbed data sources without vetting them fi rst. Before taking any action, data has to be clean and accurate. To benefi t from big ‘data lakes,’ it is important to truly understand their sources. Where does it come from? Who has manipulated it? Are they reliable? At the same time, make sure that you have enough data to discover the patterns and anomalies within that data. ML cannot turn missing, incomplete, or wrong data into valuable insights.

Myth 3: ML is about predicting the future. This is true... and false. Keep in mind that ML will always be trained on historical data, so it will struggle to predict the future in situations where the future is expected to diverge from the past, e.g.: predicting the next pandemic crisis. Instead, you should use ML for its full range of use cases: to generate business insights and to add new application features, in addition to predicting outcomes and forecasting.

Dieser Artikel ist ausschließlich in englischer Sprache erhältlich. Den vollständigen Artikel senden wir Ihnen gerne zu. Füllen Sie bitte das untenstehende Formular aus.

Nach oben